2A FISA CU 7.4 3 School ECTS - 3 Company ECTS Semester 7 ### **CU 7.4: QUALITY** Director of studies: Hind BRIL EL HAOUZI ### **General CU objectives:** - Know quality issues, standards and associated systems. - Know how to define, measure and analyse the processes of an organisation. - Know how to steer and implement a continuous improvement approach and drive change. #### Consists of: - Module 1: Management and quality systems - Module 2: Quality tools - Module 3: Environmental quality and corporate social responsibility (CSR) - Industrial assessment ### **Hourly volume** In-person Self-directed study 22.75 H Lectures 0.00 H Practicals 20.00 H Tutorials 50.00 H ### Positioning of the CU in the School reference system: Semester 7 Books to read in own time: - Manage quality for the first time, Jean Margerand & Florence Gillet-Goinard - Appliquer la maitrise statistique des procédés MSP/SPC, Maurice Pillet - Les méthodes Taguchi dans l'industrie occidentale, Lance A.EALEY Lean six-sigma, Le Voyage du Black Belt (Florent FOUQUE). #### **Units of skills** In accordance with the RNCP sheet ### **CU 7.4: QUALITY** # Module 1: Management and quality systems Coefficient 1 Session leaders: Hind BRIL EL HAOUZI, Marianne DUCHENE (Independent Auditor), other external session leaders. **Teaching assistants:** Prerequisites: none **Teaching materials:** Course notes – Presentation slides – Arche page– - Reference book - Tutorials Assessment methods: individual Practical examination | Learning outcomes | Description | (| Number of student hour
(in-person)
Lecture Tutorial Practic | | |--|---|------|---|------| | Know the principles of Quality management; Understand the issues and the need for the implementation of a Quality Management System (QMS). Identify the different types of system and product certifications. Model an organisation's processes and analyse strengths and weaknesses. Define performance indicators to monitor, measure and analyse processes. Define and implement change. | Introduction to quality: - The quality philosophy - The quality concepts | 1.75 | S | Is | | | Principles of QSE integration: - Normative issues - HLS system - Advantages/disadvantages of standards - Short presentation of ISO 9001 / 14 001 / 18 001/ 45 001 - Description of the ISO 9001 standard and structure - QSE integration - Conditions for the successful completion of a certification process | 1.75 | | | | | General safety and risk management standards: - International standards (ISO, OHSAS, etc.) - Risk assessment and methods - Industrial risks and Regulated Facilities for Environmental Protection | 1.75 | 6.00 | | | | Diagnostics and modelling: – Modelling of business and organisational processes according to BPMN scoring | 1.75 | 4.00 | | | | | 7.00 | 10.00 | 0.00 | # **CU 7.4: QUALITY** | Module 2: Quality tools | Coefficient 1 | |--|---------------| | Session leaders: Yinling LIU, Mélanie NOYEL | | | Teaching assistants: | | | Prerequisites: none | | | Teaching materials: Presentation slides – Reading list – Project | | | Assessment methods: individual | | | Class assignment – Practical examination | | | Learning outcomes | Paradia tau | Number of student hours (in-person) | | | |--|---|-------------------------------------|---------------|----------------| | | Description | Lecture
s | Tutorial
s | Practica
Is | | Implement a continuous improvement approach. Identify the causes of a problem using quality tools. Use statistical process control methods. Set up experience plans to know the behaviour of a process or resource. Use IT tools for static data processing. | Continuous quality improvement and quality tools: - The different stages of a continuous improvement approach - Loss analysis tools - Problem-solving tools - Testimonial on the use of these tools in a company in the wood furniture sector. | 3.50 | 2.00 | | | | Reminder of static methods and tools: - Normality study - Sampling - Confidence interval | 1.75 | | | | | Statistical process control – Capability analysis – Control chart | 1.75 | 2.00 | | | | Experimental plans: - Complete plan and Taguchi method - Implementation | 1.75 | 2.00 | | | | | 8.75 | 6.00 | 0.00 | # **CU 7.4: QUALITY** | Module 3: Environmental quality | Coefficient 1 | |--|---------------| | and corporate social responsibility (CSR) | Coefficient 1 | | Session leaders: Caroline SIMON, Marianne DUCHENE (Independent Auditor), Paul Emmanuel | HUET | | Teaching assistants: | | | Prerequisites: none | | | Teaching materials: Presentation slides | | | Assessment methods: individual | | | Class assignment – Practical examination | | | Learning outcomes | Description | Number of student hours (in-person) | | | |--|---|-------------------------------------|----------|-----------| | | Description | Lecture | Tutorial | Practical | | | | S | S | S | | Know sustainable development issues. Know the concepts and methodology of the Life Cycle Assessment, the Environmental and Health Declaration Sheet (FDES) and the Carbon Assessment. Analyse the results of an LCA or carbon assessment. Conduct audits for environmental certifications: FSC, PEFC, ISO14001. | Quality tools: Concepts and methodology: - Life Cycle Analysis (LCA) - Environmental Product Declarations (FDES) - Carbon assessment | 3.50 | | | | | Introduction to the PEFC (Recognition Program of Forest Certifications): - Definition and objectives - Operation and certification - PEFC challenges and benefits - Application and Examples | 1.75 | | | | | Introduction to Corporate Social Responsibility (CSR) CSR regulatory framework and implementation | 1.75 | 4.00 | | | | • | 7.00 | 4.00 | 0.00 | # **CU 7.4: QUALITY** | Industrial assessment | Coefficient | |---|-------------| | Session leaders: Apprenticeship supervisor (in company) | | | Teaching assistants: | | | Prerequisites: none | | | Teaching materials: Project | | | Assessment methods: Individual | | | Report | | | Learning outcomes | Description | Number of student hou
(in-person)
Lecture Tutorial Practi | | | |---|---|---|------|------| | | | S | S | S | | The objective of this module is to train students, through practice, in the six-sigma approach: - Define a continuous improvement project - Measure and analyse the strengths and weaknesses of the studied system - Propose and implement improvements. | Based on an industrial project (apprentice's company, company's customers or provided by the school), this project will put into practice on a concrete example the skills acquired during this teaching unit. Phase 1: Define Be aware of the manufacturing process and the adjacent problem. Draft the project charter Phase 2: Measure Carry out relevant measurement campaigns on the process in order to calculate: the sigma level of the process, the capability indices Take all the measures necessary for the analysis of the problem Phase 3: Analyse Carry out a statistical analysis of the data from the measurements in order to identify the cause of the problem Phase 4: Improve Propose a solution to eradicate the problem Phase 5: Check Set up a control card to prevent the problem from recurring Control the process using the control chart. | | | | | | | 0.00 | 0.00 | 0.00 |