

1A FISE

Semester 6

ISE

CU 6.3 5 School ECTS

CU 6.3: MATERIAL AND ENERGY TRANSFERS

Director of studies: Pierre GIRODS Hourly volume

General CU objectives:

• Know and describe the different modes of material and energy transfer.

• Apply theoretical knowledge for modelling, sizing and characterisation of material and energy transfer systems or processes.

Consists of:

Module 1: Notions of balances
Module 2: Fluid mechanics
Module 3: Heat transfers
Module 4: Not applicable

In-person Selfdirected study

74.00 H

24.50 H Lectures 26.00 H Tutorials 20.00 H Practicals

Positioning of the CU in the School reference system:

Semester 6: after CU 5.4

Units of skillsIn accordance with the RNCP sheet

1A FISE

Semester 6

CU 6.3

5 School ECTS

CU 6.3: MATERIAL AND ENERGY TRANSFERS

Modu	le 1:	Notions	of	balances
------	-------	----------------	----	----------

Coefficient 1

Session leaders: Pierre GIRODS, Alexandre SUAREZ (Practicals)

Teaching assistants: Stéphane AUBERT, Julien LALLEMAND

Prerequisites: mathematics (differential equations, integrals, derivatives, system of units, dimensions)

Teaching materials: Course notes – Several application exercises

Assessment methods: individual and in groups

Class assignment – Practical examination

		Number of student hours (in-person)		
Learning outcomes	Description	Lecture	Tutorial	Practica
Describe the material and energy transfers in a system or process. Find the equation governing these transfers in transient and steady state.	Balances: - Energy (steady-state, transient) - Energy (steady-state, transient) - Quantity of movement (steady-state, transient) - Application to the sizing of the heating needs of housing	3.50	4.00	Is
Solve the equation.	"modelling the temperature change in a housing module according to the type of insulation and air renewal (single or double flow CMV)" practical			4.00
		3.50	4.00	4.00

1A FISE

Semester 6

CU 6.3

5 School ECTS

CU 6.3: MATERIAL AND ENERGY TRANSFERS

Module 2: Fluid mechanics

Coefficient 2

Session leaders: Pierre GIRODS, Alexandre SUAREZ (Practicals)

Teaching assistants: Stéphane AUBERT, Julien LALLEMAND

Prerequisites: mathematics (differential equations, integrals, derivatives, system of units, dimensions)

Teaching materials: Course notes – Several application exercises

Assessment methods: individual and in groups

Class assignment – Practical examination

Learning autoomos	Description		Number of student hours (in-person)		
Learning outcomes	Description	Lecture	Tutorial	Practica	
		s	s	ls	
Solve fluid static problems (calculation of forces, etc.).	Static fluids: - Fundamental principle of hydrostatics - Pascal's theorem - Archimedes' theorem Application to the determination of the forces on the walls of a tank and to the measurement of pressure.	1.75	2.00		
Describe the different flow modes and the reasons behind pressure losses. Set up a method for measuring experimental pressure losses. Analyse the results of these measurements by comparison with theoretical values. Size aeraulic (suction or air renewal) or hydraulic (heating networks)	Fluids dynamics: - Fluid definitions (Newtonian or other, real or perfect) - Perfect, real fluid flows (pressure losses, etc.) - Continuity equation, Bernoulli's theorem - Reaction (force) of a pipe crossed by a fluid Application to flow measurements and sizing of aero/hydraulic networks	7.00	6.00		
	"pressure loss measurements" and "flow rate measurements" practical			8.00	
	,	8.75	8.00	8.00	

1A FISE
Semester 6

CU 6.3

5 School ECTS

CU 6.3: MATERIAL AND ENERGY TRANSFERS

Module 3: Heat transfers

Coefficient 2

Session leaders: Caroline SIMON, Pierre GIRODS, Eliott GAUTHEY FRANET (Tutorials), Alexandre SUAREZ (Practicals)

Teaching assistants: Stéphane AUBERT, Julien LALLEMAND

Prerequisites: mathematics (differential equations, integrals, derivatives, system of units, dimensions)

Teaching materials: Course notes – Several application exercises

Assessment methods: Individual and in groups Class assignment—Practical examination

Looming cutcomes	Description		Number of student hours (in-person)		
Learning outcomes	Description	Lecture s	Tutorial s	Practica Is	
	Conduction: - general principle; - reference equation; - examples and importance	1.75	3	- 13	
Describe the different modes of heat transfer. Determine heat exchanges through walls or pipes (simple cases in steady state). Explain the impact of taking into account the transitional state. Size a heat exchanger	Convection: - forced convection/natural convection - reference equations for calculations; - applications to general cases	3.50			
	Conduction/convection coupling: – balance of the transfer modes; – examples of walls & pipes	1.75	14.00		
	Radiation: - general principle & importance; - calculations for black bodies; - balances in concrete examples; - application to grey bodies.	3.50			
	Application to heat exchangers	1.75			
	Practicals: - Thermal conductivity measurement; - Study of a coaxial co-current and counter-current cylindrical heat exchanger.			8.00	
	1	12.25	14.00	8.00	

"Year" "CU" CU

Semester "ECTS_Ecole" School ECTS

CU "CU": "Name"