

1A FISA
Semester 6

CU 6.3

5 School ECTS - 0 Company ECTS

CU 6.3: MATERIAL AND ENERGY TRANSFERS

Director of studies: Pierre GIRODS

General CU objectives:

• Know and describe the different modes of material and energy transfer.

 Apply theoretical knowledge for modelling, sizing and characterisation of material and energy transfer systems or processes.

Consists of:

• Module 1: Notions of balances

• Module 2: Fluid mechanics

• Module 3: Heat transfers

• Module 4: Cross-cutting project

Hourly volume

In-person

Self-directed study
40.00 H

24.50 H Lectures

66.00 H Tutorials

0.00 H Practicals

Positioning of the CU in the School reference system:

Semester 6: after CU 5.4

Units of skills

In accordance with the RNCP sheet

Module 1: Notions of balances	Coefficient 1	
Session leaders: Pierre GIRODS		
Teaching assistants:		
Prerequisites: mathematics (differential equations, integrals, derivatives, system of units, dimensions)		
Teaching materials: Course notes – Several application exercises		
Assessment methods: individual and in groups		
Class assignment – cross-cutting project in pairs		

Learning outcomes	Description	Number of student hours (in-person)			
		Lecture	Tutorial	Practica	
Describe the material and energy transfers in a system or process. Find the equation governing these transfers in transient and steady state. Solve the equation.	Balances: - Energy (steady-state, transient) - Energy (steady-state, transient) - Quantity of movement (steady-state, transient) - Application to the sizing of the heating needs of housing	s 3.50	4.00	Is	
		3.50	4.00	0.00	

Module 2: Fluid mechanics	Coefficient 2	
Session leaders: Pierre GIRODS		
Teaching assistants:		
Prerequisites: mathematics (differential equations, integrals, derivatives, system of units, dimensions)		
Teaching materials: Course notes – Several application exercises		
Assessment methods: individual and in groups		
Class assignment—cross-cutting project in pairs		

Learning outcomes	Description	Number of student hours (in-person) Lecture Tutorial Practica s Is		(i Lecture
Solve fluid static problems (calculation of forces, etc.). Describe the different flow modes and the reasons behind pressure losses.	Static fluids - Fundamental principle of hydrostatics - Pascal's theorem - Archimedes' theorem Application to the determination of the forces on the walls of a tank and to the measurement of pressure.	1.75	2.00	
Set up a method for measuring experimental pressure losses. Analyse the results of these measurements by comparison with theoretical values	Fluids dynamics: - Fluid definitions (Newtonian or other, real or perfect) - Perfect, real fluid flows (pressure losses, etc.) - Continuity equation, Bernoulli's theorem - Reaction (force) of a pipe crossed by a fluid Application to flow measurements and sizing of aero/hydraulic networks	7.00	6.00	
	'	8.75	8.00	0.00

Module 3: Heat transfers	Coefficient 2
Session leaders: Caroline SIMON, Pierre GIRODS, Eliott GAUTHEY FRANET (Tutorials)	
Teaching assistants:	
Prerequisites: mathematics (differential equations, integrals, derivatives, system of units, dimensi	ions)
Teaching materials: Course notes – Several application exercises	
Assessment methods: individual and in groups	
Class assignment— cross-cutting project in pairs	

Learning outcomes	Description	Number of student hours (in-person)			
	Description	Lecture Tutorial		Practical	
Describe the different modes of heat transfer. Determine heat exchanges through walls or pipes (simple cases in steady state). Explain the impact of taking into account the transitional state. Size a heat exchanger.	Conduction: – general principle; – reference equation; – examples and importance	1.75	S	S	
	Convection: - forced convection/natural convection - reference equations for calculations; - applications to general cases	3.50			
	Conduction/convection coupling: – balance of the transfer modes; – examples of walls & pipes	1.75	14.00		
	Radiation: - general principle & importance; - calculations for black bodies; - balances in concrete examples; - application to grey bodies.	3.50			
	Application to heat exchangers	1.75			
		12.25	14.00	0.00	

Module 4: Cross-cutting project	Coefficient 2
Session leaders: Pierre GIRODS	
Teaching assistants:	
Prerequisites: Module 1, 2, 3	
Teaching materials: Company documents	
Assessment methods: Individual	
Report	

Learning outcomes	Description	Number of student hours (in-person)			
				Practical	
Describe the different modes of heat transfer. Determine heat exchanges through walls or pipes (simple cases in steady state). Size aeraulic (suction or air renewal) or hydraulic (heating networks) systems.	Prom data of the apprentice's company, characterise an analysis covering the following areas: - Suction system - Heating of company premises: heat transfer mode - Heat exchanger - Etc.				
		0.00	40.00	0.00	